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Abstract

Computational models of distributional semantics (a.k.a. word embeddings)
represent a word’s meaning in terms of its relationships with all other words.
We examine what grammatical information is encoded in distributional mod-
els and investigate the role of indirect associations. Distributional models are
sensitive to associations between words at one degree of separation, such as
‘tiger’ and ‘stripes’, or two degrees of separation, such as ‘soar’ and ‘fly’.
By recursively adding higher levels of representations to a computational,
holographic model of semantic memory, we construct a distributional model
sensitive to associations between words at arbitrary degrees of separation.
We find that word associations at four degrees of separation increase the
similarity assigned by the model to English words that share part-of-speech
or syntactic type. Word associations at four degrees of separation also im-
prove the ability of the model to construct grammatical English sentences.
Our model proposes that human memory uses indirect associations to learn
part-of-speech and that the basic associative mechanisms of memory and
learning support knowledge of both semantics and grammatical structure.
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mental lexicon, holographic models, mediated associations

1. Introduction1

Syntax (how words are put together) and semantics (what words mean)2

have traditionally been understood as arising from distinct cognitive pro-3

cesses. The distinction between syntax and semantics was famously illus-4

trated by Chomsky (1956) with the example “Colorless green ideas sleep5

furiously”, a sentence that is grammatical but meaningless.6

But can syntax and semantics be understood as arising from a unitary7

cognitive process? Predictive neural language models (e.g., Ororbia II et al.,8

2017) appear to be sensitive to both syntax and semantics. Recurrent neu-9

ral networks are able to make judgements about subject-verb agreement in10

nonsensical sentences such as “Colorless green ideas sleep furiously” without11

needing to rely on part-of-speech tagging or other syntactic markers (Gulor-12

dava et al., 2018). However, due to the “black box” nature of neural network13

models, it is difficult to say exactly what information is being exploited by14

the networks to make decisions about syntax.15

Even though the nonsense sentence “Colorless green ideas sleep furiously”16

has a set of word transitions that do not appear in English language corpora,17

the sentence has a very common English construction: adjective, adjective,18

noun, verb, adverb. How do humans learn that, at an abstract level, the sen-19

tence is structurally similar to many other sentences in their life experience?20

Jenkins (1964, 1965) and Jenkins and Palermo (1964) hypothesize that21

knowledge of the syntactic structure of language depends on indirect or me-22

diated associations. More specifically, part-of-speech, or the knowledge that23

nouns can be substituted for other nouns and verbs for other verbs, and so24

on, depends on learning equivalence classes through mediated association.25

Although Jenkins (1968, 1974) ultimately abandoned the paradigm of un-26

derstanding language and memory in terms of associations and equivalence27

classes altogether, more recent studies with children have found that ex-28

ploiting equivalence classes is a powerful pedagogical technique for rapidly29

expanding a learner’s language abilities (Sidman, 2009).30

To explore the hypothesis that learning the part-of-speech of words is31

based on a capacity for indirect or mediated association, we propose a “deep”32

distributional semantics model, the Hierarchical Holographic Model (HHM).33

HHM consists of a stack of holographic vector models that feed one into the34
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next, which allows HHM to detect arbitrarily indirect associations between35

words. HHM is based on BEAGLE (Jones et al., 2006; Jones and Mewhort,36

2007), one of the few distributional semantics models sensitive to the order37

of words in sentences, a critical part of English syntax.38

Holographic models of human memory have a long history (Murdock,39

1982; Pribram, 1969) and have been applied to a wide range of paradigms40

(e.g., Eliasmith, 2013; Franklin and Mewhort, 2015; Jamieson and Mewhort,41

2011). Holographic vectors allow for easy implementation of a recursive42

model capable of learning arbitrarily indirect associations. Our approach43

can be understood as an extension of Jenkins and Palermo (1964)’s work,44

though instead of using artificial grammar experiments, we use a computa-45

tional approach applied to an English-language corpus.46

In what follows, we provide theoretical background on the Hierarchical47

Holographic Model and then evaluate the model. We give a proof-of-concept48

demonstration of HHM on a small artificial dataset and then train HHM on49

an English-language corpus. We analyze the relationship between the rep-50

resentations produced by the higher levels of HHM and part-of-speech (e.g.,51

nouns, adjectives, adverbs, etc.) and the syntactic types proposed by Com-52

binatory Categorical Grammar (CCG; Steedman and Baldridge, 2011). We53

show that HHM’s representations can be used to order words into grammat-54

ical sentences and we test HHM on the sentence “Colorless green ideas sleep55

furiously”. HHM is an account of the mental lexicon based on a general-56

purpose computational model of human memory. HHM demonstrates how57

a single system can incorporate knowledge of both how a word is used (i.e.,58

part-of-speech) and what a word means (i.e., distributional semantics).59

2. Theory60

In this section, we describe the BEAGLE model of distributional seman-61

tics (Jones and Mewhort, 2007), based on the holographic model of memory62

(Plate, 1995). We propose the Hierarchical Holographic Model (HHM). HHM63

is a recursively constructed variant of BEAGLE capable of detecting arbi-64

trarily high orders of association. We then define orders of association as a65

measure of the relationship between a pair of words in memory.66

2.1. The BEAGLE Model67

The BEAGLE model (Jones and Mewhort, 2007) belongs to the family68

of distributional semantics models, also known as word embeddings. Distri-69
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butional models include Latent Semantic Analysis (Landauer and Dumais,70

1997), the Hyperspace Analogue to Language (Burgess and Lund, 1997), the71

Topics Model (Griffiths et al., 2007), word2vec (Mikolov et al., 2013), GloVe72

(Pennington et al., 2014), as well as word embeddings extracted from neural73

language models such as BERT (Devlin et al., 2019). Distributional models74

use the word co-occurrence statistics of a large corpus to construct high-75

dimensional vectors that represent the meanings of words. Each vector can76

be understood as a point in a high-dimensional space and distance in the77

space serves as a measure of similarity in meaning. Words that are closer78

together have more similar meanings. Such a space, where distance measures79

similarity in meaning, is referred to as a semantic space.80

In BEAGLE, each word is represented by two vectors: an environment81

vector that represents the percept of a word (i.e., the word’s perceptual82

features) and a memory vector that represents the concept of a word (i.e.,83

the word’s meaning and associations).84

An environment vector (denoted by e) stands for what a word looks like85

in writing or sounds like when spoken. For simplicity, we do not simulate the86

visual or auditory features of words (but see Cox et al., 2011, for a version of87

BEAGLE that does simulate features). Instead, we generate the environment88

vectors using random values, as in Jones and Mewhort (2007). Thus, in our89

simulations, words with similar morphology (e.g., walk and walked) have90

dissimilar environment vectors, such that the model needs to learn from the91

corpus that the two words are related.92

Environment vectors are generated by randomly sampling values from a93

Gaussian distribution with a mean of zero and a variance of 1/d, where d94

is the dimensionality. Individually, the dimensions of the vectors have no95

inherent meaning: they do not stand for specific words or features. A word96

is represented as a pattern of values across all dimensions. The number97

of dimensions, d, determines the fidelity with which BEAGLE stores word98

co-occurrence information, such that smaller d yields poorer encoding.99

Memory vectors (denoted by m) represent the associations a word has100

with other words. As the model reads the corpus, memory vectors are contin-101

uously updated. For example, the words walk and walked are represented by102

dissimilar, randomly-generated environment vectors. But, because the words103

are used in similar ways, walk and walked develop highly similar memory vec-104

tors. That said, the two memory vectors will not be identical, as walked is105

more likely to appear in contexts with other past-tense verbs and walk with106

other present-tense verbs (e.g., “I walked to the store and bought bread” vs.107
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“I walk to the store and buy bread.”).108

BEAGLE stores two kinds of information in a memory vector: context109

and order. The context information for a target word in a sentence is the sum110

of the environment vectors of the other words in the sentence. Conversely,111

the order information for a word in a sentence is a sum of sequences of words112

that include the target word. A sequence of words is represented by a vector113

that is a convolution of the environment vectors of the words in the sequence.114

2.1.1. Order information115

The memory vectors are termed holographic because they use circular116

convolution to compactly encode associations between words (Plate, 1995).117

According to holographic theories of memory (Eliasmith, 2013; Murdock,118

1982; Pribram, 1969), patterns of neural activity in the brain interfere to119

create new associations in a manner mathematically analogous to how light120

waves interfere to create a hologram (Gabor, 1969). Given two patterns of121

neural activity represented as vectors, the interference pattern produced by122

the association of the two is computed as the convolution of the vectors.123

To compute the order information for a target word, a sum of n-grams124

is added to the target word’s memory vector. The n-grams are at minimum125

bigrams consisting of the target word and the word immediately preceding or126

following. The n-grams also have a maximum size that can be set. Jones and127

Mewhort (2007) use a maximum of 7-grams. We experiment with maximum128

n-gram sizes ranging from 5-grams to the full length of the sentence.129

For example, given the sentence, “eagles soar over trees”, BEAGLE up-130

dates the memory vectors for each word in the sentence: eagles, soar, over,131

and trees. For soar, the following n-grams are added into the memory vector132

msoar: the bigrams “eagles soar” and “soar over”, the trigrams “eagles soar133

over” and “soar over trees”, and the tetragram “eagles soar over trees”.134

Each n-gram is constructed as a convolution of the environment vectors135

of the constituent words, except for the target word, which is represented by136

the placeholder vector (denoted by Φ). The placeholder vector is randomly137

generated and serves as a universal retrieval cue. With the placeholder sub-138

stituted for the target word, each n-gram can be understood as a question to139

which the target word is the answer. So, rather than adding a representation140

of “eagles soar over” into msoar, we instead add “eagles ? over”, i.e., “What141

was the word that appeared between eagles and over?”. Each memory vector142

can be understood as the sum of all questions to which that memory vector’s143

word is an appropriate answer.144

5



Given “eagles soar over trees”, we add “eagles ?”, “? over”, “eagles ?145

over”, “? over trees”, and “eagles ? over trees” to msoar as follows:146

msoar,t+1 = msoar,t+(Pbeforeeeagles) ∗Φ+

(PbeforeΦ) ∗ eover+

(Pbefore((Pbeforeeeagles) ∗Φ)) ∗ eover+

(Pbefore((PbeforeΦ) ∗ eover)) ∗ etrees+

(Pbefore((Pbefore((Pbeforeeeagles) ∗Φ)) ∗ eover)) ∗ etrees

where ∗ is circular convolution, t is the current time step, all vectors m, e, and147

Φ have d dimensions, and Pbefore is a permutation matrix used to indicate148

that a word occurred earlier in the sequence (see Appendix for discussion).149

Pbefore is made by randomly reordering the rows of the d x d identity matrix.150

Multiplying a vector v by Pbefore results in the permuted vector Pbeforev.151

2.1.2. Context information152

Context information is a sum of environment vectors. For example, the153

context information for msoar and the sentence “Eagles soar over trees” is:154

msoar,t+1 = msoar,t + eeagles + eover + etrees (1)

For the purposes of the simulations reported in this paper, we only use the155

order information and exclude the context information, as we found little156

benefit to including context information in the word ordering task that we157

use to evaluate the models.158

2.1.3. Applications of BEAGLE159

BEAGLE can model semantic priming (Jones et al., 2006), the pattern160

of semantic memory deficits in Alzheimer’s disease (Johns et al., 2013), as161

well as basic memory phenomena, such as release from proactive interference162

(Mewhort et al., 2018).163

While BEAGLE is a model of the mental lexicon, Dynamically Structured164

Holographic Memory (Rutledge-Taylor et al., 2014) is a variant of BEA-165

GLE applied to non-linguistic memory and learning tasks, such as learn-166

ing sequences of actions for strategic game play. Kelly et al. (2015) and167

Kelly and Reitter (2017) propose another BEAGLE variant, Holographic168

Declarative Memory, that learns sets of property-value pairs (e.g., colour:red169
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shape:octagon type:sign) of the kind used by the ACT-R cognitive architec-170

ture (Anderson, 2009), showing that BEAGLE’s algorithm can be applied to171

any problem domain that can be expressed in discrete symbols.172

The Hierarchical Holographic Model (HHM) can, like BEAGLE, be ap-173

plied to a wide range of problem domains. While we evaluate HHM in this174

paper in terms of its ability to account for properties of natural language,175

HHM is intended as a general model of learning and memory.176

2.2. Hierarchical Holographic Model177

The Hierarchical Holographic Model (HHM) is a series of BEAGLE-like178

models, such that the memory vectors of one model serve as the environ-179

ment vectors for the next model. Level 1 is a standard BEAGLE model180

with randomly generated environment vectors, except that we only use or-181

der information to construct the memory vectors. Level 2 and higher are182

order-only BEAGLE models where the environment vectors are the memory183

vectors of the previous level. Once Level 1 has been run on a corpus, Level 2184

is initialized with Level 1’s memory vectors as its environment vectors. Then185

Level 2 is run on the corpus to generate a new set of memory vectors, which186

in turn are used as the environment vectors for the next level, and so on, to187

generate as many levels of representations as desired.188

To use the memory vectors of a previous level as the environment vectors189

for the next, one must normalize and randomly permute the vectors. Vectors190

are normalized to unit Euclidean length to ensure that each word is equally191

weighted at the next level. Without normalization, high-frequency words192

would disproportionately dominate the representations at the next level.193

Permutation is necessary to protect the information encoded at one level194

from information encoded at the next level (Gayler, 2003). Without using195

permutation, the different levels of information become confounded and de-196

structively interfere with each other (Kelly et al., 2013). The destructive197

interference arises because convolution distributes over addition. If we con-198

volve a memory vector with another vector, that vector will distribute across199

all of the component n-gram vectors that are summed into the memory vec-200

tor. If the other vector is also a memory vector, all of its n-grams will201

distribute across all of the memory vector’s n-grams to create a multitude of202

spurious n-gram representations.203

Thus, to transform memory vectors to environment vectors, the elements204

of all memory vectors are re-ordered according to a randomly generated per-205
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mutation, Pgroup. For level l + 1, and all words i, the environment vectors206

for that level are:207

el+1,i = Pgroup(
ml,i√

ml,i •ml,i

) (2)

where e and m are environment and memory vectors and • is the dot product.208

The levels in HHM can be understood as the products of memory re-209

consolidation, the process of revisiting experiences and recording new infor-210

mation about those experiences. The different levels of representation are211

stored separately from each other in the model for the purpose of examining212

the differential effects of representations that encode lower and higher or-213

ders of associations. The different levels are not necessarily separate memory214

systems, but instead could constitute different kinds of knowledge within a215

single memory system.216

2.3. Orders of Association217

Saussure (1916) defines two types of relationships between words: paradig-218

matic and syntagmatic. Syntagmatic describes a relationship a word has with219

other words that surround it. Paradigmatic describes a relationship in which220

a pair of words can be substituted for each other.221

Grefenstette (1994) defines first-order, second-order, and third-order affini-222

ties between words and notes that computational language models are typi-223

cally sensitive to either first-order (topic) or second-order (synonymy) affini-224

ties. Grefenstette defines third-order affinities as semantic groupings among225

similar words, which can be discovered using cluster analysis techniques.226

We define the term order of association as a measure of the degree of227

separation of two words in an agent’s language experience. Imagine a graph228

where each word in the lexicon is a node connected to other words. Order229

of association is the length of a path between two words in the graph. The230

strength of that order of association is the number of paths of that length231

between the two words.232

A pair of words are connected once for each time they have occurred in the233

same context. In human cognition, the context is defined by the associations234

in mind at the time of encoding. Ideally, we would use a model of memory235

to determine when words are or are not in the same context (see §5.2 for236

discussion). However, for simplicity, we use a context that is a window of237

five or more words to the left and right of the target word.238
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First-order association describes two words that appear together. In the239

sentence “eagles soar over trees”, the words eagles and trees have first-order240

association. Words with strong first-order association (i.e., frequently appear241

together) are often related in topic (i.e., have a syntagmatic relationship),242

such as the words tiger and stripes.243

Second-order association describes two words that appear with the same244

words. Given “airplanes soar through skies” and “airplanes fly through245

skies”, soar and fly have second-order association. Words with strong second-246

order association are often synonyms (i.e., have a paradigmatic relationship).247

Third-order association is a first-order association plus a second-order as-248

sociation (i.e., a paradigmatic relationship plus a syntagmatic relationship).249

For example, tiger and stripes have a first-order association and lion and tiger250

have a second-order association. Thus, lion and stripes have a third-order251

association mediated by tiger.252

Statistical smoothing algorithms use third-order associations to estimate253

the acceptability of novel bigrams (Pereira, 2000; Roberts and Chater, 2008).254

For example, unsightly bumbershoot is a perfectly acceptable adjective-noun255

pair, but is unlikely to appear in a corpus that doesn’t include this paper. But256

an unsightly bumbershoot is very similar to an unsightly umbrella. The third-257

order association between unsightly and bumbershoot mediated by umbrella258

can be used to judge that unsightly bumbershoot is an acceptable bigram.259

Fourth-order association describes two words that appear with words that260

appear with the same words. A fourth-order association is two second-order261

(or paradigmatic) associations added together.262

The sentences in Table 1 provide an artificial example of a fourth-order263

association. Words with fourth-order association are indicated in bold and264

words with second-order association are indicated in italics. The word pairs265

soar and fly, over and above, and trees and forest each have second-order266

associations. Given only the sentences in Table 1, the words eagles and birds267

do not have first-, second-, or third-order association, but do have fourth-268

order. The web of associations between the words in Table 1’s sentences is269

illustrated in Figure 1.270

Table 1 is an artificial example. In natural language, eagles and birds271

have strong second-order association (i.e., are highly synonymous). Fourth-272

order association indicates that two words can be substituted for each other,273

but at a more abstract level than second-order association (synonymy). We274

hypothesize that word pairs that have strong fourth-order association, but do275

not have first- or second-order association, are words unrelated in meaning276
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Table 1: Example of a fourth order association between eagles and birds.

Sentences
eagles soar over trees birds fly above forest
airplanes soar through skies airplanes fly through skies
dishes are over plates dishes are above plates
squirrels live in trees squirrels live in forest
cars drive on streets

but are grammatically acceptable to substitute for each other. We expect277

that words with fourth-order association are likely to share part-of-speech278

or syntactic type (e.g., focused and emerging can both be used as a verb or279

adjective, see Table 2). We explore this hypothesis in Sections 3.3 and 3.4.280

Fifth-order and higher associations can be obtained by abstracting indef-281

initely. Eventually, all words are related to all other words in the language.282

Even-numbered associations are paradigmatic or super-paradigmatic rela-283

tionships that indicate a semantically valid or, we hypothesize, syntactically284

valid substitution.285

Odd-numbered associations are syntagmatic or super-syntagmatic rela-286

tionships describing the association between a word and other words that287

could appear either with the word directly (first-order) or with another word288

like it (third-order, fifth-, etc.).289

No association describes a pair of words that have no path between them290

of any length. For an agent that knows only the nine sentences in Table 1,291

the words car and eagle have no association. In real language data, two292

words will only have no association if they belong to two different languages293

(e.g., the words goyang-i from Korean and borroka from Basque have no294

association with each other).295

In our description of orders of association we have glossed over the ques-296

tion of the distinct nature of syntagmatic versus paradigmatic associations.297

For two words to have a syntagmatic association, it is sufficient for the words298

to co-occur in any way. Conversely, for paradigmatic associations, the two299

words should be interchangeable for each other, which is contingent on posi-300

tion in the sentence or phrase.301

HHM, as implemented in this paper, is specifically a model of super-302

paradigmatic associations between words. Examining super-syntagmatic as-303
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Figure 1: Web of associations between words in Table 1.

sociations is beyond the scope of our work, as our interest is in part-of-speech304

and syntactic type relationships, which are valid substitution relationships,305

rather than co-occurrence (or syntagmatic) relationships. For the purposes of306

this paper, we only use order vectors in HHM. However, we have found that307

odd-numbered orders of association are captured by recursively constructing308

levels of representation using context vectors.309

To define orders of association, we have described the lexicon as a con-310

nected graph. This graph is not explicitly represented by HHM. HHM defines311

a semantic space rather than a graph. Words close together at Level 1 of312

HHM have strong second-order association, Level 2 represents fourth-order313

associations, Level 3 represents sixth-order associations, and so on.314

Note that order of association in a language is distinct from orders of315

approximation to a language. Orders of approximation is a measure of how316

closely a probability model approximates a language as measured by the317

number of words that are taken into account when predicting the next word318
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in a sequence (Shannon, 1951). Depending on the size of the HHM context319

window, we use up to 5, 10, or k preceding words to predict a word as well320

as up to 5, 10, or k of the succeeding words, where k is the length of the321

sentence. As such, HHM could be described as a 5th, 10th, or kth order322

approximation to English. Independent of this parameter is the order of323

association. In this paper, we explore using up to eighth-order associations.324

Order of approximation and association interact, such that higher orders325

of approximation (i.e., larger context windows) are more useful in a model326

sensitive to higher orders of association.327

3. Simulations and Experiments328

We test two hypotheses:329

1. Level 2 (fourth-order associations) or higher levels of the Hierarchical330

Holographic Model (HHM) significantly outperform Level 1 (second-331

order associations) on tests of correlates of syntactic knowledge.332

2. Whereas second-order associations are semantic in character, fourth-333

order associations or higher provide knowledge that is primarily part-334

of-speech or a word’s syntactic type.335

We contrast the two hypotheses with two alternatives:336

1. Fourth-order associations or higher do not improve performance on337

tests of correlates of syntactic knowledge.338

2. Fourth-order associations or higher merely provide additional lexical se-339

mantic knowledge, such that given more data, a model sensitive only to340

second-order associations would discover the same word relationships.341

To test these hypotheses, we begin by validating HHM as a model of342

orders of association. We show that HHM works as intended and is able to343

detect fourth-order associations in a small artificial data set (Section 3.1).344

To demonstrate that higher-order associations are lexical syntactic in345

character, we investigate the relationship between higher-order associations346

and part-of-speech (Experiment 1).347

However, part-of-speech provides only a coarse-grained analysis of the348

types of words in English. Conversely, Combinatory Categorical Grammar349

(CCG; Steedman and Baldridge, 2011) postulates hundreds of different word350

types. In CCG, a word type captures what types of phrases the word may351
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combine with to the left or to the right (and the associated semantic op-352

erations). Thus grammatical information is stored along with the word in353

the lexicon, providing fine-grained information about how each word is used.354

The theory proposes a very limited set of syntactic and semantic operations355

in parsing and sentence production that is parameterized for the specific356

language. CCG is a broad-coverage formalism that allows us to study the357

granularity of grammatical information that might be represented in the vec-358

tors generated by higher-order associations (Experiment 2).359

While comparisons between HHM, part-of-speech, and CCG types are360

illuminating, part-of-speech and CCG are theories of language, not language361

itself. To evaluate the role of higher-order associations in producing gram-362

matical sentences, we situate HHM’s word representations in a simple exem-363

plar model that operates on sentences. We use a word ordering task where the364

exemplar model must order a given set of words into a grammatical sentence.365

By varying the level of HHM used by the exemplar model, we investigate the366

effect of higher-orders of association and n-gram size on the ability of the367

model to find the grammatical ordering of the words (Experiment 3).368

Chomsky (1956) famously gave “Colorless green ideas sleep furiously”369

as an example of a sentence that is grammatical but meaningless. If the370

sentence is truly meaningless we would expect that second-order (semantic)371

associations would be insufficient for finding the grammatical ordering of372

the words colorless, furiously, green, ideas, and sleep. However, if fourth-373

order associations are syntactic in character, we should expect to find that374

the exemplar model can find the grammatical ordering of the words using375

representations from Level 2 of HHM (Experiment 4).376

Through these simulations and experiments, we seek to demonstrate the377

validity of HHM as a model, HHM’s relationship to established theories of378

syntax, and the role of higher-order associations in constructing grammatical379

sentences. Code for running HHM12 and the exemplar model is available380

online, along with data and figures3.381

3.1. Small Example on Artificial Data382

Here we show that HHM is able to detect higher-order associations as383

intended. For the purposes of providing a clear illustration of the behavior384

1https://github.com/ecphory/BEAGLE-HHM
2https://github.com/moojan/Python-BEAGLE-HHM
3https://github.com/ecphory/Indirect-Associations

13

https://github.com/ecphory/BEAGLE-HHM
https://github.com/moojan/Python-BEAGLE-HHM
https://github.com/ecphory/Indirect-Associations


of the model, we use a small artificial data set that provides a clean example385

of first-, second-, and fourth-order associations. The data set consists exclu-386

sively of the sentences in Table 1. This is merely a toy example, but useful387

for demonstrating how the model works. This example has been designed388

such that the word pairs soar and fly, over and above, and trees and forest,389

have second-order associations, whereas the word pair eagles and birds, have390

a fourth-order association.391

HHM was run with 1024 dimensional vectors and three levels of repre-392

sentations. In the nine sentences of this example, there are 21 unique words,393

and thus 210 unique pairs of words. We can characterize the behavior of394

HHM by how the word pairs change in similarity across levels.395

Figure 2 shows cosine similarity between the word pairs as a function of396

level of representation in HHM. Of the 210 word pairs, we graph the 24 word397

pairs that have non-negative similarity by Level 3. Of those 24 pairs, we398

label and rank the 10 pairs with the most similarity, from over above (cosine399

= 0.70 at Level 3) to over in (cosine = 0.20 at Level 3). Word pairs with400

fourth-order association are in bold and word pairs with strong second-order401

association are in italics.402

The memory vectors for words with second-order association are close on403

Level 1 (e.g., soar and fly, cosine = 0.51) and closer by Level 3 (cosine =404

0.67). The words eagle and bird, which have only fourth-order association,405

are unrelated on Level 1 (cosine = -0.01) but are the fifth most similar word406

pair by Level 3 (cosine = 0.33).407

The results provide a simple example of the effect of the higher levels.408

Each memory vector at Level 1 is constructed as a sum of convolutions of409

environment vectors. As such, the memory vectors at Level 1 encode first-410

order associations with respect to the environment vectors, measuring the411

frequency with which each word co-occurs with other words and sequences412

of words. The cosines between memory vectors are a measure of second-413

order association, the degree to which the two words co-occur with the same414

words. The algorithm that produces Level 1 transforms data that captures415

first-order association (co-occurrence) into data that captures second-order416

associations. The algorithm is a step, and by repeating it to produce higher417

levels, we can build a staircase.418

Level 1 of the model cannot detect associations higher than second-order.419

A pair of words with third-order association or higher, but not first or second,420

do not appear together in the same sentence and do not co-occur with the421

same words. As such, the memory vectors for a pair of words with only third-422
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Figure 2: Cosines between word pairs across levels.

order or higher association will be constructed from disjoint sets of vectors.423

At Level 1, m1,eagles is a sum of convolutions of e1,soar, e1,over, e1,forest, whereas424

m1,birds is a sum of convolutions of e1,fly, e1,above, e1,trees. As Level 1 environ-425

ment vectors are approximately orthogonal, the memory vectors constructed426

from them will also be approximately orthogonal. As a result, m1,eagles and427

m1,birds are approximately orthogonal (cosine = -0.01).428

But at higher levels, the environment vectors are no longer orthogonal429

because the environment vectors for Level 2 are the memory vectors for430

Level 1. As a result, e2,soar is similar to e2,fly (cosine = 0.51), e2,over is similar431

to e2,above (cosine = 0.46), and e2,forest is similar to e2,trees (cosine = 0.43).432

Even though m2,eagles and m2,birds are still constructed from disjoint sets of433

environment vectors, because the vectors that they are constructed from are434

similar, m2,eagles and m2,birds are somewhat similar (cosine = 0.20).435

Because the Level 2 environment vectors are more similar to each other436

than the Level 1 environment vectors, the memory vectors for the pairs soar437
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and fly, above and over, and forest and trees are also more similar at Level 2438

than at Level 1 (see Figure 2). As a result, the Level 3 environment vectors439

for the three word pairs will be more similar at Level 3 than Level 2, which440

drives up the similarity between eagles and birds (cosine = 0.33). Eventually,441

at even higher levels, each pair soar and fly, above and over, and forest and442

trees will converge approximately to a point (cosine ≈ 1), causing eagles and443

birds to converge as well. The similarity between eagles and birds will never444

exceed the similarity between the three words pairs that the fourth-order445

association is contingent upon because it is the strengthening of those second-446

order associations that drives the strength of the fourth-order association.447

3.2. Training the Model448

We train HHM on the Novels Corpus from Johns et al. (2016b) with449

10 238 600 sentences, 145 393 172 words, and 39 076 unique words. HHM450

reads the corpus one sentence at a time. Within each sentence, HHM uses a451

moving window centered on a target word. Within the window, all n-grams452

that include the target word, from bigrams up to n-grams of window width,453

are encoded as convolutions of environment vectors and summed into the454

target word’s memory vector. We use 1024 dimensional vectors and four lev-455

els of representations, where Level 1 is sensitive to second-order associations,456

Level 2 to fourth-order, Level 3 to sixth-order, and Level 4 to eight-order.457

At each level of HHM, we experiment with four maximum n-gram sizes:458

1. 5-gram HHM: an 11 word window (5 words to the left and right of the459

target) where the model learns all 2- to 5-grams within that window,460

2. 11-gram HHM: an 11 word window where the model learns all 2- to461

11-grams within that window,462

3. 21-gram HHM: a 21 word window where the model learns all 2- to463

21-grams within that window, and464

4. Sentence HHM: a sentence-length window, where the model learns465

all bigrams to sentence length n-grams within that window.466

For all models, the window cannot cross sentence boundaries (e.g., in a five-467

word sentence, the 21-gram HHM uses a five-word window). Note that for the468

5-gram HHM, the maximum n-gram size (5) is distinct from the window size469

(11), whereas for the three other models the window size is also the maximum470

n-gram size. We consider large window sizes to account for human sensitivity471

to long-range dependencies in language, though given that humans can, in472
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principle, be sensitive to arbitrarily long-range dependencies, we consider the473

fixed context window to be an approximation (see §5.2 for discussion).474

We use the four HHMs for the following experiments.475

3.3. Experiment 1: Part of Speech476

If higher-order associations are useful for knowing how a word can be477

appropriately used in a grammatical sentence, we should expect to see that478

higher orders of associations enhance the sensitivity of the model to mea-479

sures of how words are used. In this section, we explore correlations between480

HHM’s representations and part-of-speech (noun, verb, adverb, adjective,481

etc.). In the next section, we examine the correlation between HHM’s rep-482

resentations and the syntactic types proposed by Combinatory Categorical483

Grammar (CCG; Steedman and Baldridge, 2011).484

Using WordNet (Princeton University, 2010) and the Moby Part-Of-485

Speech List (Ward, 1996), we assign a set of part-of-speech tags to each486

word in the 39 076 word vocabulary. We use similarity between words that487

are the same part-of-speech as a proxy measure for knowledge that those488

words can be used in similar ways.489

Properly speaking, part-of-speech is a theory of language, rather than a490

behavioral phenomenon, and as such, a cognitive model of language use need491

not account for part-of-speech as long as it can account for how humans492

produce and comprehend sentences. Nevertheless, looking at the relation-493

ship between the representations of HHM and part-of-speech categories can494

illustrate the effect of the higher levels of the model.495

Here we analyze the 11-gram HHM, as it is the model with the highest496

correlation to CCG types in Experiment 2. However, we inspected other497

windows sizes for this analysis and did not observe substantive differences.498

To examine the effect of higher-order associations, we compare Levels 1 and499

2 (i.e., second- vs fourth-order associations), Levels 2 and 3 (i.e., fourth vs500

sixth), and Levels 3 and 4 (i.e., sixth vs eighth).501

To provide clear examples of higher-order associations and their relation-502

ships to part-of-speech, we limit our intial analysis to words with at least503

1000 occurrences in the corpus, as these words have the most robust vec-504

tor representations. While the part-of-speech of some words (e.g., manager,505

a noun) may be easy to learn from only a few examples, words with more506

flexible part-of-speech (e.g., course, which can be used as a noun, verb, or507

adjective) may require more examples to learn all the ways in which the word508
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can used, particularly if one of the uses is obscure (e.g., entire, n., an uncas-509

trated horse). We also limit our initial analysis to the 500 unique word pairs510

that increase or decrease in similarity the most between levels. By unique,511

we mean that we select word pairs where neither word in the pair is present512

in any of the other 500 word pairs to ensure statistical independence.513

By limiting our analysis in these ways, we focus on unambiguous examples514

of relationships between words that are affected by fourth-order associations.515

However, by limiting our analysis, we limit the scope of our conclusions in516

this analysis to high-frequency words and strong associations. As such, we517

also conduct more general analyses in this and later sections.518

To illustrate the nature of higher-order associations, the word pairs that519

changed the most in similarity between pairs of levels are shown in Table 2.520

The word pairs that increase the most from Level 1 to 2 can be understood521

as the most pure examples of words with fourth-order associations but no522

second-order associations. For example, focusing and derived have a cosine523

of -0.10 at Level 1, indicating no second-order association, but have a cosine524

of 0.86 at Level 2, indicating a strong fourth-order association. Likewise, the525

word pairs that increase the most from Level 2 to 3 can be understood as526

the most pure examples of sixth-order associations, and from Level 3 to 4,527

eighth-order associations.528

We can see in Table 2, that the four word pairs that increase the most in529

similarity from Level 1 to 2 are unrelated in meaning, which suggests that530

second-order associations are sufficient for semantics. However, the top four531

word pairs that increased the most in similarity from Level 1 to 2 each have532

exactly matching part-of-speech. While the words focusing and derived are533

unrelated in meaning, they are both typically verbs that can also be used as534

adjectives (e.g., a focusing lens or a derived equation). Likewise, focused and535

emerging can both be used as either an adjective or a verb.536

By contrast, from Level 3 to 4, the word pair that increases the most in537

similarity is across and druid, which has neither meaning nor part-of-speech538

in common. The word pairs that increase and decrease the most from Level 3539

to 4 suggest that Level 4 may not provide useful linguistic information.540

From Level 1 to Level 2, the three word pairs that decrease the most in541

similarity have partially matching part-of-speech: clerk and local can both542

be used as nouns (e.g., local in the sense of a local union branch), as can543

manager and main (e.g., main as in a water main), and operator and entire544

(i.e., entire as in an uncastrated horse). However, the use of local, main,545

and entire as nouns is highly infrequent, whereas each is commonly used as546
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Table 2: The four word pairs that increased or decreased the most in similarity between
each level, with each word’s parts of speech (POS) and each word pairs’ change in cosine
similarity between levels (∆ cos). Matching part-of-speech in bold.

levels word 1 word 2 POS 1 POS 2 ∆ cos
1 to 2 focusing derived v., adj. v., adj. +0.95

searching associated v., adj. v., adj. +0.93
focused emerging v., adj. v., adj. +0.92
perched emerged v. v. +0.92
clerk local n., v. n., adj. -0.37
manager main n. n., adj. -0.37
operator entire n. n., adj. -0.37
truth outer n. adj. -0.37

2 to 3 beings accord n. plural n., v. +0.55
course cent n., v., adv. n. +0.50
lone amounts adj. n. plural, v. +0.50
prime bye n., v., adj. exclam., n. +0.48
eh velvet exclam. n., adj. -0.14
huh silk exclam. n. -0.12
creaked hemisphere v. n. -0.11
erupted regions v. n. plural -0.11

3 to 4 across druid prep., adv. n. +0.37
course ought n., v., adv. n., v., adv. +0.37
been Russians v. n. plural +0.36
must fraction n., v. n., v. +0.36
huh which exclam. det., pron. -0.05
eh however exclam. adv. -0.04
distinction nineteenth n. n., adj. -0.03
but furthermore adv. adv. -0.03

adjectives. As such, these three word pairs are better understood as examples547

of mismatching part-of-speech (nouns vs. adjectives). Because a partial part-548

of-speech match is not indicative of the relative frequency of the multiple uses549

of the word, it is difficult to interpret whether a partial match is more like a550

match or a mismatch. Thus, we focus our analysis on exact matches.551

For the 500 word pairs that increased or decreased the most in similar-552
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ity between each level, Figure 3 shows how many are exact part-of-speech553

matches, partial matches, or have mismatching part of speech. In total, 13%554

of all words pairs in the lexicon are exact part-of-speech matches. Among555

the 500 unique word pairs that increased the most from Level 1 to Level 2,556

there are significantly more (18%) exact matches than would be expected in557

a random sample of word pairs (p < 0.01). Of the 500 unique word pairs558

that decreased in similarity the most from Level 1 to 2, 9% are exact matches559

(e.g., both great and stranger can be used as an adjective and a noun), which560

is significantly fewer than expected in a random sample (p < 0.01).561
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Figure 3: 500 unique word pairs that increased/decreased the most in similarity at each
level, categorized by part-of-speech match.

However, from Level 2 to 3 and from Level 3 to 4, significantly more exact562

matches than expected in a random sample are among the top 500 word563

pairs that decrease the most (p < 0.0001). From Level 3 to 4, significantly564

fewer exact matches are among the 500 word pairs that increase the most565

(p < 0.0001).566
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The reversal suggests that fourth-order associations are sufficient to dis-567

cover most exact part-of-speech matches. Indeed, from Level 2 to 3, among568

the 500 word-pairs that decrease the most, the exact matches have a mean569

decrease in similarity of 0.00, with a mean cosine of 0.90 between the words570

at both Levels 2 and 3. Likewise, from Level 3 to 4, the mean decrease571

in similarity is 0.00 for exact matches, with a mean cosine of 0.98 at both572

Levels 3 and 4. The exact matches are already highly similar by Level 2573

and remain highly similar at Levels 3 and 4, and as such their similarity is574

increased little by sensitivity to sixth- and eighth-order associations.575

Our analysis thus far has focused on a highly select sample of the corpus:576

words that occur at least 1000 times and word pairs whose similarity changes577

dramatically between levels. For the purposes of a more general analysis, we578

test the ability of HHM to classify the parts-of-speech of all words that occur579

in the corpus at least five times. Among the 37 543 words that occur at least580

five times, there are 104 unique sets of part-of-speech tags. We construct a581

prototype for each part-of-speech tag set as a sum of the vectors for each582

word that has the exact same tag set. We then classify each word in the583

lexicon according to the closest prototype, as measured by cosine similarity.584

As shown in Figure 4a, at Level 1, 20% of words are closest to the proto-585

type that matches the word’s parts-of-speech. Classification accuracy mod-586

estly improves at Levels 2 (22%) and 3 (23%) before declining at Level 4587

(19%). Accuracy is not high, however, as there are 104 part-of-speech pro-588

totypes, chance classification accuracy is at 1% correct.589

We re-run the classification only using each word’s most frequent part-of-590

speech tag in the corpus. We identify the dominant tag using the Stanford591

Log-Linear Part-of-Speech Tagger (Toutanova et al., 2003) from the Stanford592

CoreNLP package (Manning et al., 2014)4. Again, we exclude words that593

occur less than five times in the corpus, as well as words with unique part-of-594

speech tags (e.g., the word “to” is the only word assigned the tag “TO”) for a595

total of 37 539 words and 29 part-of-speech tags. We compute a prototype for596

each of the 29 tags and assign words to the closest tag. Chance classification597

accuracy is 3%.598

As shown in Figure 4b, at Level 1, 53% of word are classified correctly.599

Accuracy increases to 62% at Level 2, plateaus at Level 3 (61%) and decreases600

at Level 4 (58%). Misclassifying nouns and adjectives as each other is the601

4https://stanfordnlp.github.io/CoreNLP/
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Figure 4: Classification accuracy of words by closest part-of-speech prototype.

largest single source of classification errors at Level 1. At Level 1, 14% of all602

classifications are errors from confusing nouns and adjectives, compared to603

only 5% of all classifications at Level 2. The gain in classification accuracy604

from Level 1 to 2 is mostly due to correctly distinguishing adjectives and605

nouns. Conversely, confusing singular and plural nouns is a source of error606

across all levels (7% of all classifications at Level 1 vs. 10% at Level 4), likely607

due to HHM’s insensitivity to case marking (see §5.4 for discussion).608

In summary, strong fourth-order associations (Level 2) strengthen sim-609

ilarities between words with matching part of speech and weaken similari-610

ties between words with mismatching part of speech. However, sixth- and611

eighth-order associations (Levels 3 and 4) do little to further increase simi-612

larity between words with the same part-of-speech, and eight-order (Level 4)613

associations may even obfuscate part-of-speech information.614

3.4. Experiment 2: Combinatory Categorical Grammar615

Part-of-speech categories (nouns, verbs, adjectives, adverbs) provide a616

coarse-grained analysis of how words are used in English. Combinatory Cat-617

egorical Grammar (CCG; Steedman and Baldridge, 2011) is a theory of gram-618

mar that provides a more fine-grained analysis of how words are used.619

In CCG, sentences are constructed by combining words using a small620

number of very simple rules. The complexity of language arises not from621

the complexity of the rules, but from the complexity of the words in the622

language. In CCG, there are hundreds of types of words, and the type of the623
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word determines how it can be combined with other words.624

The high dimensional space of HHM provides a rich representation of how625

a word is used in language. As such, correlation between HHM space and626

CCG type may be more informative than correlation between HHM space627

and part-of-speech categories.628

To classify the words in HHM by CCG type, we use the Switchboard629

Corpus (Godfrey et al., 1992). The Switchboard Corpus is a collection of630

2500 telephone conversations. The syntactic structure of the corpus has631

been annotated using CCG (Reitter et al., 2006). There are 10 256 unique632

words in the corpus. Of those words, we use the 8768 words that are also in633

the Novels Corpus. Just as a word can be both an adjective and a verb, a634

word can have multiple CCG types. To represent the CCG type profile of a635

word, we represent each word in the Switchboard Corpus by a vector of 357636

dimensions, one dimension for each CCG type in the corpus, where the value637

in each dimension is a count of the number of times that word appears as638

the given CCG type in the corpus.639

The CCG type vectors define similarity relationships between the set of640

8768 words. We compute a 8768 x 8768 similarity matrix by taking the641

cosine of each pair of vectors. To compare relationships in CCG space to642

relationships in HHM space, we also compute a 8768 x 8768 similarity matrix643

for each level of HHM. To measure the correlation between CCG space and644

HHM spaces, we use Spearman’s rank correlation coefficient, which is a non-645

parametric measure of monotonic (linear or non-linear) relationships in data.646

We compute the Spearman’s correlation between the CCG cosine matrix647

and the cosine matrix for each level of HHM. Figure 5 shows the correlation648

for each Level of HHM and each maximum n-gram size. The 11-gram HHM649

achieved the highest correlation with CCG types across all levels, peaking at650

Level 3 with a correlation of 0.382.651

A correlation of 0.382 is not especially high, but it is worth noting that a652

low correlation does not indicate that HHM is wrong or that CCG is wrong.653

HHM’s representations contain semantic information that CCG types do not654

contain. Likewise, CCG types may contain some particulars of syntax that655

it may be difficult for HHM to learn from a corpus using a sliding context656

window (see §5.2 for a discussion of using a memory model instead of a fixed657

window). Other differences may arise simply from how words are used in the658

Switchboard Corpus versus the Novels Corpus.659

HHM’s correlation to CCG is worse when the model includes up to 21-660

grams or full-sentence-grams, or when restricting the model to 5-grams.661
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Larger n-grams are not always better: as larger n-grams are more unique,662

they may be less useful for making inferences about new sentences.663
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Figure 5: Spearman’s rank correlation coefficient between HHM vectors and CCG types.

We see the same pattern across the four levels for the 11-gram, 21-gram,664

and full-sentence HHM, with increasing correlation until Level 3, and then a665

decrease at Level 4. Though correlation to CCG types is lowest at Level 1666

for all models, the increase in correlation is modest, indicating that Level 1667

can account for much of the information captured by CCG types.668

The 5-gram model does not replicate this pattern of correlation, which669

we attribute to differences in how the 5-gram model is constructed. Whereas670

the other models compute all n-grams within the window, the 5-gram model671

computes only 2 to 5-grams within an 11-word window. The dissociation672

between window size (11) and maximum n-gram (5), appears to produce a673

different behavioural profile than when window size and maximum n-gram674

size are scaled together, though we do still see a general upward trend in675

correlation at higher levels. The 5-gram model is essentially just the 11-676

gram model with the 6- to 11-grams removed, as both models look forward677
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and backward 5 words from the target word. However, the 5-gram model’s678

correlation to CCG types is lower than the 11-gram model at all levels, which679

suggests that the 6- to 11–grams are, in fact, providing useful information680

about syntax, independently from the size of the context window.681

In summary, higher-order associations (up to Level 3, i.e., sixth-order682

associations) improve the ability of the model to capture syntactic type re-683

lationships and that large n-grams, in the range from 6-grams up to at least684

11-grams, provide useful information about the syntactic type of words.685

3.5. Experiment 3: Word Ordering Task686

The real test of syntactic knowledge is the ability to form grammatical687

sentences. Do higher-order associations provide additional useful information688

about how to sequence words into a grammatical sentence? When given an689

unordered set of words that can be arranged into a sentence, are higher levels690

of HHM better able to find the grammatical ordering?691

We replicate a task from Johns et al. (2016a). In this task, a model is692

given an unordered set of n words taken from an n-word sentence. The model693

must discern which of the n! possible word orderings is the original ordering.694

HHM is not, by itself, able to perform the word ordering task, because695

HHM does not operate on sentences. However, HHM’s representations con-696

tain word-level information that can be leveraged to perform the task when697

situated within a sentence-level model. We use a simplified version of the ex-698

emplar model used by Johns et al. (2016a). The exemplar model is provided699

with an exemplar set consisting of 125 000 seven-word sentences randomly700

sampled from the Novels Corpus. Sentences in the exemplar set have no701

words with frequency less than 300. All test set sentences and permutations702

thereof are excluded from the exemplar set.703

We embed the word representations generated by each level of HHM in704

the exemplar model. Each sentence in the exemplar set is represented as705

a pair of vectors in the exemplar model. One vector is an unordered set706

of words constructed as a sum of HHM’s memory vectors representing each707

word in the sentence. The second vector is the sum of all ordered sequences of708

words in the sentence, from individual words up to 7-grams. Each sequence709

is constructed as a convolution of HHM’s memory vectors for each word in710

the sequence. Before use, all HHM vectors are normalized to a Euclidean711

length of one and permuted, as shown in Equation 2.712

Test items are a set of 200 seven-word sentences as used by Johns et al.713

(2016a). Test items have simple syntactic construction and consist of words714
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that occur at least 300 times in the corpus. Test items are presented to the715

exemplar model as an unordered set of words.716

The exemplar model first selects the exemplar sentence most similar to the717

test item, as measured by the cosine between the vectors for the unordered718

sets. Then, of the 7! possible orderings of the words in the test item, the719

model selects the ordering most similar to that of the selected exemplar720

sentence, as measured by the cosine between the vectors representing the721

ordered sequences of words. The ordering produced by the model is judged722

to be correct if it matches the original ordering of the words in the test item.723
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Figure 6: Test sentences correctly ordered by model as a function of vectors used to
represent words.

We test all four versions of HHM from Level 1 to Level 3. To ensure that724

results are not contingent on a particular sample of 125 000 exemplar sen-725

tences, results are averaged across 50 random samples. Mean percent correct726

across the 50 samples is shown in Figure 6. To test for statistical significance727

across the seven conditions, we use a repeated-measures permutation test, a728

non-parametric measure (Mewhort et al., 2010, 2009).729
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We also include a “Level 0” as a baseline for performance. Level 0 rep-730

resents individual words as randomly generated vectors and the sentence731

vectors are constructed from those vectors. In effect, at Level 0, the model732

selects the exemplar sentence with the most words in common with the test733

item and applies the word ordering of the selected exemplar to the test item.734

Level 0 provides a baseline where the model is sensitive to neither seman-735

tic similarity nor higher-order associations but is sensitive to word overlap736

between the test item and exemplars. Level 0 gets a mean of 35.1% correct.737

Level 1 outperforms Level 0 across all window sizes (p < 0.0001) with a738

mean of 57.1% correct. Level 1 selects the exemplar sentence that has the739

most semantic similarity to a given test item.740

Level 2 outperforms Level 1 across all window sizes (p < 0.001) with741

a mean of 59.2% correct, demonstrating that fourth-order associations con-742

tribute to the task of ordering words into grammatical sentences.743

At Level 3, performance declines for all models p < 0.0001 except the744

21-gram HHM, for which performance does not change significantly from745

Level 2 to 3 (p > 0.05). Here we see a significant effect of window size. The746

21-gram HHM outperforms all other Level 3 models (p < 0.0001) and the747

5-gram HHM performs worse than all other Level 3 models (p < 0.0001).748

Inspecting by hand the errors made in a single run of Level 0 and each749

level of the 21-gram HHM, we find that the pattern of errors varies little750

across levels. The Levenshtein edit distance from a produced error to a cor-751

rect ordering has a mean of 3 at each level of the model. All levels occasion-752

ally suggest a grammatical ordering of the words different from the original753

ordering (e.g., “he opened the door and got up”, an incorrect ordering at754

Level 3, is grammatical even if “he got up and opened the door” would be a755

more typical sequence of actions). At Level 0, we found that an additional756

6.5% of the 200 sentences produced were grammatical but not the original757

ordering. At Level 1, we found an additional 11.5% to be grammatical, at758

Level 2, an additional 11.0%, and at Level 3, an additional 7.5%. The re-759

maining incorrect orderings are ungrammatical, typically due to a misplaced760

word (e.g., “came a serious look over his face”, at Level 1, misplaces the verb761

came, or “I do not much trust you that”, at Level 2 misplaces much).762

Our results show that for the task of ordering words into grammatical763

sentences, a model that uses fourth-order associations between words out-764

performs a model that uses second-order associations. Our results also show765

that a model that uses second-order associations or higher outperforms a766

model that only uses word overlap (i.e. Level 0).767
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The results show little benefit to using a window beyond 5-grams, possibly768

because the task is restricted to constructing 7-gram sentences. However, the769

5-gram HHM performs the worst at Level 3 and the 21-gram HHM performs770

the best, which suggests there are two counter-acting processes at work. At771

higher levels, HHM is increasingly able to make useful inferences about the772

relationships between large, low frequency n-grams, while simultaneously773

losing the ability to make fine discriminations between small, high frequency774

n-grams. We hypothesize that the decline in task performance from Levels775

2 to 3 is due to all HHMs losing the ability to make fine discriminations776

for small n-grams. Performance of HHM representations that contain larger777

n-grams is less affected as those models are simultaneously gaining an ability778

to better use those large n-grams.779

To test this hypothesis, we break down HHM into its constituent n-gram780

components. While the HHMs previously discussed learned 2-grams up to781

n-grams for some n, here we train each HHM on one and only one size of782

n-gram. For Level 0, we use random vectors. For Level 1, we use Level 0’s783

random vectors to construct a 2-gram only HHM, a 3-gram only HHM, etc.,784

up to a 7-gram only HHM. For Level 2, we construct the HHMs out of Level 1785

of the 2- to 21-gram HHM. For Level 3, we construct the HHMs out of Level 2786

of the 2- to 21-gram model. We use the 2- to 21-gram HHM as it is the model787

with the most robust performance across all levels on this task.788

Figure 7 shows the percentage of test sentences ordered correctly across789

different sizes of n-gram and levels of HHM. Results are averaged across 10790

sets of 125 000 exemplar sentences. Higher levels of the model are better able791

to use larger n-grams. Level 1 of HHM is best able to use 2-grams and 3-792

grams. Conversely, at Level 3 of HHM, the model is able to make use of large793

n-grams, but performance declines for smaller n-grams. Task performance794

at Level 2 of HHM peaks for 3- to 6-grams, and declines for 2- and 7-grams.795

Level 0 is included for a baseline performance of 35.1% correct.796

Figure 7 illustrates that at higher levels, HHM progressively loses the797

ability to make fine distinctions between small n-grams as the representations798

for the words that compose the n-grams become increasingly similar. For799

example, “she grinned” and “he smiled” may be represented by identical or800

nearly identical bigrams at higher levels. However, higher levels begin to be801

able to make use of large n-grams. At lower levels, large n-grams are unique,802

and thus do not provide useful information about the relationships between803

words. At higher levels, large n-grams are similar to other large n-grams.804

For example, while the 7-gram “you are as gregarious as a locust” may occur805
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Figure 7: Test sentences correctly ordered as a function of n-gram size and HHM level.

only once in a corpus, at higher levels of HHM, this 7-gram comes to resemble806

other 7-grams, such as “he was as strong as an ox”.807

Correctness is a noisy metric of model skill as it is binary. We can get808

a more precise measure of model skill by using the cosine scores assigned to809

each of the 7! alternative orderings. To measure the degree of confidence810

with which the model endorses a given ordering as grammatical, we use the811

deviation of the grammatical ordering’s cosine from the cosines of the other812

orderings. The deviation is a graded measure, sensitive to how close the813

model is to wrong when it’s correct and how close to correct the model is814

when it’s wrong, giving us a better picture of the model’s decisions. We815

normalize the deviation by the standard deviation to control for differences816

in the spread of cosine values at different levels.817

As shown in Figure 8, the deviations yield the same pattern of results as818

Figure 7. The ability of the Level 1 models to discriminate between the cor-819

rect answer and alternatives is highest for 2-grams and 3-grams and declines820
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Figure 8: Deviation of correct word ordering from alternatives as a function of n-gram
size and HHM level.

for larger n-grams. At Level 3, we observe the opposite: the deviation of the821

correct answer is highest for 7-grams and declines for smaller n-grams. At822

Level 2, deviation peaks at 5- grams, declining for smaller or larger n-grams.823

The results in Figures 7 and 8 demonstrate that the higher levels of HHM824

allow for better use of large n-gram information, at the cost of a declining825

ability to make discriminations between small n-grams. Specifically, Level 1826

(i.e., second-order associations) representations make the best use of 2-grams827

and 3-grams, Level 2 (i.e., fourth-order associations) makes the best use of828

4-grams to 6-grams, and Level 3 makes the best use of 7-grams.829

Note that none of the combined n-gram models in Figure 6 outperform830

the 3-gram only Level 2 model or the 7-gram only Level 3 model, which831

suggests that simpler HHMs may be sufficient for the word ordering task.832

Accuracy on the task can be increased by using more data. By increasing833

the size of the exemplar set from 125 000 sentences to 500 000, accuracy for834

the 21-gram Level 2 HHM improves from 60% correct to 68% correct.835
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Performance can also be improved by using a more complex model. Rather836

than selecting the best exemplar, Johns et al. (2016a) use a weighted sum of837

all exemplars to make word-ordering decisions. Each exemplar is weighted838

by the cosine similarity between the exemplar and the unordered set of words839

in the test item, raised to a power (a fitting parameter).840

Johns et al. (2016a) report a best accuracy of 60% with 500 000 exemplars,841

random vectors (Level 0), and an exponent of 9. We find a best accuracy of842

76% correct with 500 000 exemplars, the 21-gram Level 2 HHM vectors, and843

an exponent of 450. However, our aim is not to optimize accuracy on the844

word-ordering task, but to illustrate the role of higher-order associations in845

constructing grammatical sentences.846

3.6. Experiment 4: Colorless green ideas sleep furiously847

Chomsky (1956) gives “Colorless green ideas sleep furiously” as an exam-848

ple of a sentence that is grammatically correct but meaningless. By contrast,849

Chomsky notes that “Furiously sleep ideas green colorless” is ungrammati-850

cal. Chomsky uses this example as an argument against statistical models of851

speech. Unless the sentence “Colorless green ideas sleep furiously” is part of852

the statistical model’s training corpus, a statistical model would neither be853

able to generate the sentence nor determine that it is grammatical.854

Pereira (2000) demonstrates that a statistical model can, in fact, discrim-855

inate between “Colorless green ideas sleep furiously” and the ungrammati-856

cal “Furiously sleep ideas green colorless”. Pereira uses an aggregate bigram857

model that estimates the probability of each bigram in “Colorless green ideas858

sleep furiously” by using second-order associations to known bigrams and an859

expectation-maximization algorithm (Dempster et al., 1977). Pereira’s ag-860

gregate bigram model finds that “Colorless green ideas sleep furiously” is861

about 20 000 times more likely than “Furiously sleep ideas green colorless”.862

HHM is also a statistical model that can be understood as estimating the863

probability of unseen n-grams through the use of higher-order associations.864

Can the higher levels of HHM discern that “Colorless green ideas sleep fu-865

riously” is a grammatical sentence? Given the unordered set of five words866

colorless, furiously, green, ideas, and sleep, there are 5! = 120 possible order-867

ings of those words. Does HHM demonstrate a better than chance preference868

for Chomsky’s grammatical but meaningless ordering of the words over “Fu-869

riously sleep ideas green colorless” or the 118 other orderings? If HHM is870

purely semantic and “Colorless green ideas sleep furiously” is a purely syn-871

tactic sentence, performance should be no better than chance at this task.872
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We use the same exemplar model as in the previous section. To construct873

the exemplar model’s vectors, we use the 21-gram HHM. The exemplar model874

is provided a set of five-word sentences and picks the sentence most similar to875

the unordered set of words colorless, furiously, green, ideas, and sleep. The876

selected sentence’s structure is then used to score the 120 possible orderings.877
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Figure 9: Deviation from the mean cosine score as a function of HHM level.

Mean deviation of both “Colorless green ideas sleep furiously” and “Furi-878

ously sleep ideas green colorless” at each level of HHM is shown in Figure 9.879

Results are averaged across 50 different random sets of 125 000 sentences.880

Error bars indicate standard error. Word orderings above zero are judged to881

be more grammatical than the mean of the 120 possible sentence orderings882

and orderings below zero are judged to be less grammatical than the mean.883

Is “Colorless green ideas sleep furiously” more grammatical, according to884

the exemplar model, than “Furiously sleep ideas green colorless”? To test885

for statistical significance, we use a repeated-measures permutation test. At886

Level 0, “Furiously sleep ideas green colorless” is more grammatical (p <887
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0.05) whereas at Levels 2 and 3, “Colorless green ideas sleep furiously” is888

more grammatical (p < 0.05). Given that the two sentences are exact reverse889

orderings of each other, it is not surprising that the model’s confidence in890

each sentence is roughly the inverse of the other’s.891

Thus, selecting exemplar sentences with words in common with the test892

set (e.g., green, furiously, etc.), as the model does at Level 0, is not enough to893

make the correct grammatical distinction. Selecting sentences with similar894

meanings (e.g., red, angrily, etc.), as Level 1 does, is likewise insufficient.895

Higher-order associations at Levels 2 and 3, seem to be necessary to deter-896

mine that “Colorless green ideas sleep furiously” is the more grammatical897

alternative of the pair.898

Identifying ‘Colorless green ideas sleep furiously” as the most grammat-899

ical ordering of the 120 possible orderings is a more difficult problem. Only900

at Level 2 does the model judge “Colorless green ideas sleep furiously” to be901

more likely than average (p < 0.05), selecting it as the most likely ordering 7902

times out of 50. The rate at which Level 2 selects “Colorless green ideas sleep903

furiously” as the preferred alternative might be improved by either increas-904

ing the number of exemplars over the current 125 000 or by using a more905

sophisticated model (e.g., Johns et al., 2016a; Gulordava et al., 2018).906

The results suggest that “Colorless green ideas sleep furiously” cannot be907

judged as grammatical by analogy to sentences with either the same words908

or words with similar meanings. However, sensitivity to fourth-order asso-909

ciations causes representations for words with similar syntactic type to look910

increasingly alike, such that “Colorless green ideas sleep furiously”, or adjec-911

tive adjective noun verb adverb, begins to look like an English sentence.912

4. Other Models of Higher-Order Associations913

While we have based HHM on BEAGLE, it is possible to use other models914

to detect higher-order associations in language.915

The Associative Smoothing Network (Roberts and Chater, 2008), for ex-916

ample, is a spreading activation model that uses third-order associations to917

make sentence acceptability judgments. The network has no inherent limita-918

tion to how far activation can spread, and so can be easily applied recursively919

to detect fourth-, fifth-, sixth-order associations and higher.920

However, for some models, there’s no trivial way to recursively apply the921

model to incorporate higher-order associations. For example, the word2vec922

neural network expects, for each word it takes as input, a vector that uses923
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one-hot encoding5. Conversely, the semantic vectors word2vec generates have924

d dimensions, where d is much smaller than the size of the lexicon, and each925

dimension is real valued and individually meaningless.926

Because semantic vectors and one-hot vectors have such different proper-927

ties, the semantic vectors cannot be re-used as input to word2vec to recur-928

sively detect higher-order associations. While it’s almost certainly possible929

to design a neural network model of distributional semantics that can be930

recursively applied in much the same manner as HHM, word2vec cannot be931

used to do so as standardly implemented.932

BEAGLE and HHM also have a unique property that may make repli-933

cating our results with other models difficult. Other models of distributional934

semantics only learn relationships between pairs of words, whereas BEAGLE935

and HHM learn a relationship between a word and sequences of words.936

Models limited to knowing the relationships between pairs of words can937

certainly benefit from third- or fourth-order associations. The Associative938

Smoothing Network, for example, is strictly a bigram model, but third-order939

associations allow the model to make judgments about the acceptability of940

novel word pairs (Roberts and Chater, 2008). However, in the word ordering941

task, we find that improvements in performance at higher orders of associ-942

ation largely result from improving the ability of HHM to make use of the943

information in larger n-grams, n ≥ 3 (see Figures 7 and 8).944

While we are not committed to the specific implementation details of how945

the Hierarchical Holographic Model learns higher-order associations, HHM946

has two desirable properties for modelling higher-orders of association:947

1. HHM can be recursively applied an arbitrary number of times to learn948

arbitrarily high orders of association, and949

2. HHM is able to learn arbitrarily large n-grams with linear time com-950

plexity and constant space complexity.951

5. Future Work952

The Hierarchical Holographic Model (HHM) has a number of limitations,953

namely, (1) HHM learns batch-style rather than online, (2) HHM’s fixed954

window is unrealistic, (3) HHM does not combine levels of representation,955

5In one-hot encoding, a vector has one dimension for each word in the lexicon. To
represent a word, that word’s dimension is set to 1 and all other dimensions are set to 0.
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and (4) HHM is applied only to English. HHM also has possible applications956

beyond what we explore in this paper, such as (5) modelling developmental957

language acquisition. We discuss each avenue for future research in turn.958

5.1. Online Learning959

HHM is not an online model of learning. HHM learns each level of rep-960

resentation sequentially. In keeping with research on the acquisition of first961

and second order associations in children and adults (McNeill, 1963; Sloutsky962

et al., 2017), we would expect learning to happen at each order of associa-963

tion continuously and in parallel. Though we hypothesize that higher-order964

associations scaffold off lower-order associations, we hold that the scaffold-965

ing is such that higher-order associations are adjusted as new lower-order966

associations are learned.967

HHM may be able to learn all levels in parallel. Doing so will introduce968

more noise into the higher levels of the model, as early on, the level(s) below969

will not have stable memory vectors yet, but over a large enough corpus,970

stable representations should emerge first at Level 1 and then propagate971

upward to higher levels.972

5.2. Window Size973

Humans are sensitive to long-range dependencies in language. For ex-974

ample, in anaphora resolution, readers are able to identify the referent of a975

pronoun such as she even over a large number of intervening words or sen-976

tences. Readers selectively and strategically maintain pertinent information977

in memory from much earlier in a sentence, paragraph, or passage (Kintsch978

and Van Dijk, 1978).979

We include large window sizes in our simulations as proxies for the ca-980

pacity of memory to selectively retain long-range information. The sliding981

context window of HHM is best understood as an inexact proxy for the lin-982

guistic associations and dependencies available to a reader (or listener) when983

the target word in a sentence is encoded. However, human memory does not984

behave like a verbatim list of the last 21 words read (or heard).985

To build a more detailed model of human sentence processing, we would986

need to replace the sliding window with a model of the linguistic informa-987

tion maintained in working memory and stored in long-term memory, as988

in Kintsch and Van Dijk’s (1978) model of sentence processing. We would989

also need a model of selective attention to account for what information is990

35



retained in long-term memory and maintained in working memory, as in-991

formed by the model’s experience of what is likely to be useful for resolving992

the syntax and semantics of future utterances. Computational, holographic993

approaches to modelling working memory (Franklin and Mewhort, 2015) and994

episodic memory (Jamieson and Mewhort, 2011) could potentially be inte-995

grated with HHM to provide a more detailed processing model.996

5.3. Combining Levels997

Gruenenfelder et al. (2016), modeling word association norms, find that998

a hybrid model that uses both first- and second-order associations better999

matches human data. We note that on the word ordering task, while, on1000

average, Level 2 with any window, or Level 3 with the 21 word window, pro-1001

duces the best results, Level 1 often correctly ordered sentences that Levels1002

2 or 3 got wrong. Perhaps a model that uses all three levels could outper-1003

form a model that uses only one level at a time. A neural network model1004

that combines input from varying n-gram sizes and from varying orders of1005

association might be able to outperform a neural network that strictly takes1006

traditional word embeddings as input. We hypothesize that human memory1007

is able to use relations between concepts at varying levels of abstraction as1008

needed to meet task demands.1009

5.4. Other Languages1010

In languages with extensive case marking (e.g., Latin), case markers are1011

used to indicate the part-of-speech of a word instead of relying on word1012

order, as English does. To learn the case markers, HHM would need to either1013

process the corpus parsed into sub-word units (e.g., Cotterell and Schütze,1014

2015), splitting off the case marker from the root word, or to use non-random1015

environment vectors that represent the orthography of the word, as in Cox1016

et al. (2011).1017

The utility of HHM’s sensitivity to word sequence and higher-order associ-1018

ations for modelling case-marked languages is an open question. Case-marked1019

languages typically use word sequence to convey non-syntactic information1020

(e.g., emphasis or new information), such that while preserving word order1021

may not be important for syntax, per se, order remains important for con-1022

veying meaning. Thus while the type of information captured by HHM’s1023

sensitivity to word sequence and abstract associations may differ in case-1024

marked languages, we expect that sequence and associations will still play1025

an informative role. HHM’s central hypothesis is that human memory has1026
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the capacity for sensitivity to abstract associations, even if those associations1027

are potentially used differently across languages.1028

5.5. Language Acquisition1029

Children acquire first-order associations earlier in development than second-1030

order associations (Brown and Berko, 1960; Ervin-Tripp, 1970; Nelson, 1977;1031

Sloutsky et al., 2017). Likewise, McNeill (1963) found that when participants1032

are trained on a set of non-words and are tested with a free association task,1033

after 20 trials of training, participants produce only first-order associations1034

between the non-words, but by 60 trials, participants produce both first- and1035

second-order associations.1036

Sloutsky et al. (2017) propose a neural network model that captures the1037

gradual acquisition of second-order associations contingent on learning first-1038

order associations sensitive to sequential word order, as well as the acquistion1039

of order-independent first-order (syntagmatic) associations. Similarly, the1040

Syntagmatic-Paradigmatic Model (Dennis, 2004, 2005) is a computational1041

model of human memory and language learning that postulates two long-1042

term memory systems: one for sequences and one for (order-independent)1043

relations, which respectively account for knowledge of first-order (syntag-1044

matic) and second-order (paradigmatic) associations1045

According to Barcel-Coblijn et al. (2012), the point at which a child tran-1046

sitions from speaking in utterances of one or two words to speaking in full1047

sentences is the point at which the child’s knowledge of the relationships be-1048

tween words transitions from a sparsely connected graph to a dense “small1049

world” graph, typical of an adult vocabulary, where all words are several1050

steps from all other words in the graph. We hypothesize that learning longer1051

range connections between words is necessary to construct novel syntactic ut-1052

terances. We speculate that a model that captures higher-order associations,1053

such as an online variant of HHM that uses both context and order vectors,1054

and is therefore sensitive to both super-paradigmatic and super-syntagmatic1055

associations, may be able to account for the dynamics of a child’s language1056

learning process.1057

6. Conclusions1058

We define orders of association and explore the hypothesis that higher-1059

order associations in language capture syntactic relationships between words.1060

We propose a “deep” model of distributional semantics, the Hierarchical1061
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Holographic Model (HHM), sensitive to higher-order associations. We eval-1062

uate the correlation between HHM’s representations, part-of-speech, and the1063

lexical syntactic types of Combinatory Categorical Grammar (CCG; Steed-1064

man and Baldridge, 2011). We find that strong fourth-order associations are1065

likely to increase similarity between words with the same part-of-speech and1066

decrease similarity between words with mismatching part-of-speech. Fourth-1067

and sixth-order associations increase correlation with CCG type relative to1068

second-order (i.e., paradigmatic) associations.1069

Fourth-order associations also improve the ability of HHM’s represen-1070

tations to order words into grammatical sentences, including nonsense sen-1071

tences such as Chomsky (1956)’s “Colorless green ideas sleep furiously”. The1072

usefulness of higher-order associations interacts with the window size of the1073

distributional semantics model, such that larger n-grams require higher or-1074

ders of association in order to contribute useful information, whereas smaller1075

n-grams are best represented using lower orders of association.1076

In summary, we find consistent evidence that fourth-order associations1077

(Level 2) provide useful linguistic information of a syntactic character. Con-1078

versely, the evidence is mixed for sixth-order (Level 3), and we find no evi-1079

dence that eighth-order associations (Level 4) are useful for linguistic tasks.1080

We hypothesize that humans are also sensitive to higher-order associa-1081

tions in non-linguistic domains. Humans have the ability to abstract away1082

from the specifics of an experience (i.e. episodic memories) to infer concepts1083

(i.e., semantic memories) from the patterns that occur across multiple ex-1084

periences (e.g., Hintzman, 1986). The theoretical claim of HHM is that the1085

pattern inference process is recursive, such that human memory can also infer1086

meta-concepts from patterns across concepts, and that these meta-concepts1087

play an important role in human behaviour, such as language.1088

7. Acknowledgments1089

We thank Eilene Tomkins-Flanagan, Kevin D. Shabahang, and the late1090

D. J. K. Mewhort for the use of their BEAGLE code. We are also indebted to1091

D. J. K. Mewhort for comments on the paper and the use of his server, funded1092

by a grant from the Natural Sciences and Engineering Research Council of1093

Canada (NSERC: APA 318). We thank Jeremy R. Cole for use of his CCG1094

vectors and for his comments on the paper. We thank Saranya Venkatraman1095

for her insights regarding the word2vec model. This research has been funded1096

by an Ontario Graduate Scholarship and NSERC Post-Doctoral Fellowship1097

38



to M. A. Kelly, a National Science Foundation grant (BCS-1734304) to David1098

Reitter and M. A. Kelly, and a grant from NSERC to Robert L. West.1099

References1100

Anderson, J.R., 2009. How can the human mind occur in the physical uni-1101

verse? Oxford University Press, New York, NY.1102

Barcel-Coblijn, L., Corominas-Murtra, B., Gomila, A., 2012. Syntactic trees1103

and small-world networks: Syntactic development as a dynamical process.1104

Adaptive Behavior 20, 427–442. doi:10.1177/1059712312455439.1105

Brown, R., Berko, J., 1960. Word association and the acquisition of grammar.1106

Child Development 31, 1–14.1107

Burgess, C., Lund, K., 1997. Modelling parsing constraints with high-1108

dimensional context space. Language and Cognitive Processes 12, 177–210.1109

Chomsky, N., 1956. Three models for the description of language. IRE1110

Transactions on Information Theory 2, 113–124. doi:10.1109/TIT.1956.1111

1056813.1112

Cotterell, R., Schütze, H., 2015. Morphological word-embeddings, in: Pro-1113

ceedings of the 2015 Conference of the North American Chapter of the1114

Association for Computational Linguistics: Human Language Technolo-1115

gies, Association for Computational Linguistics, Denver, Colorado. pp.1116

1287–1292. doi:10.3115/v1/N15-1140.1117

Cox, G.E., Kachergis, G., Recchia, G., Jones, M.N., 2011. Towards a scalable1118

holographic representation of word form. Behavior Research Methods 43,1119

602–615. doi:10.3758/s13428-011-0125-5.1120

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from1121

incomplete data via the em algorithm. Journal of the royal statistical1122

society. Series B (methodological) , 1–38URL: http://www.jstor.org/1123

stable/2984875.1124

Dennis, S., 2004. An unsupervised method for the extraction of propositional1125

information from text. Proceedings of the National Academy of Sciences1126

101, 5206–5213. doi:10.1073/pnas.0307758101.1127

39

http://dx.doi.org/10.1177/1059712312455439
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.3115/v1/N15-1140
http://dx.doi.org/10.3758/s13428-011-0125-5
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://dx.doi.org/10.1073/pnas.0307758101


Dennis, S., 2005. A memory-based theory of verbal cognition. Cognitive1128

Science 29, 145–193. doi:10.1207/s15516709cog0000\_9.1129

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training1130

of deep bidirectional transformers for language understanding, in: Pro-1131

ceedings of the 2019 Conference of the North American Chapter of the1132

Association for Computational Linguistics: Human Language Technolo-1133

gies, Association for Computational Linguistics, Minneapolis, Minnesota.1134

pp. 4171–4186. doi:10.18653/v1/N19-1423.1135

Eliasmith, C., 2013. How to build a brain: A neural architecture for biological1136

cognition. Oxford University Press, New York, NY.1137

Ervin-Tripp, S.M., 1970. Substitution, context, and association, in: Postman,1138

L., Keppel, G. (Eds.), Norms of Word Association. Academic Press, pp.1139

383 – 467. doi:10.1016/B978-0-12-563050-4.50012-1.1140

Franklin, D.R.J., Mewhort, D.J.K., 2015. Memory as a hologram: An anal-1141

ysis of learning and recall. Canadian Journal of Experimental Psychology1142

69, 115–135. doi:10.1037/cep0000035.1143

Gabor, D., 1969. Associative holographic memories. IBM Journal of Research1144

and Development 13, 156–159. doi:10.1147/rd.132.0156.1145

Gayler, R.W., 2003. Vector symbolic architectures answer Jackendoff’s chal-1146

lenges for cognitive neuroscience, in: Slezak, P. (Ed.), Proceedings of the1147

Joint International Conference on Cognitive Science. University of New1148

South Wales, Sydney, Australia, pp. 133–138. URL: http://cogprints.1149

org/3983/.1150

Godfrey, J.J., Holliman, E.C., McDaniel, J., 1992. Switchboard: Telephone1151

speech corpus for research and development, in: [Proceedings] ICASSP-1152

92: 1992 IEEE International Conference on Acoustics, Speech, and Signal1153

Processing, pp. 517–520 vol.1. doi:10.1109/ICASSP.1992.225858.1154

Grefenstette, G., 1994. Corpus-derived first, second and third-order word1155

affinities, in: Proceedings of the Sixth Euralex International Congress,1156

Association for Computational Linguistics, Amsterdam, The Netherlands.1157

pp. 279–290.1158

40

http://dx.doi.org/10.1207/s15516709cog0000_9
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1016/B978-0-12-563050-4.50012-1
http://dx.doi.org/10.1037/cep0000035
http://dx.doi.org/10.1147/rd.132.0156
http://cogprints.org/3983/
http://cogprints.org/3983/
http://cogprints.org/3983/
http://dx.doi.org/10.1109/ICASSP.1992.225858


Griffiths, T.L., Steyvers, M., Tenenbaum, J.B., 2007. Topics in semantic1159

representation. Psychological Review 114, 211–244. doi:10.1037/0033-1160

295X.114.2.211.1161

Gruenenfelder, T.M., Recchia, G., Rubin, T., Jones, M.N., 2016. Graph-1162

theoretic properties of networks based on word association norms: Im-1163

plications for models of lexical semantic memory. Cognitive Science 40,1164

1460–1495. doi:10.1111/cogs.12299.1165

Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., Baroni, M., 2018.1166

Colorless green recurrent networks dream hierarchically, in: Proceedings1167

of the 2018 Conference of the North American Chapter of the Association1168

for Computational Linguistics: Human Language Technologies, Volume 11169

(Long Papers), Association for Computational Linguistics. pp. 1195–1205.1170

URL: http://aclweb.org/anthology/N18-1108, doi:10.18653/v1/N18-1171

1108.1172

Hintzman, D.L., 1986. “Schema abstraction” in multiple-trace memory mod-1173

els. Psychological Review 93, 411–428. doi:10.1037/0033-295X.95.4.1174

528.1175

Jamieson, R.K., Mewhort, D.J.K., 2011. Grammaticality is inferred from1176

global similarity: A reply to kinder (2010). The Quarterly Journal of Ex-1177

perimental Psychology 64, 209–216. doi:10.1080/17470218.2010.537932.1178

Jenkins, J.J., 1964. A Mediational Account of Grammatical Phenomena.1179

Journal of Communication 14, 86–97. doi:10.1111/j.1460-2466.1964.1180

tb02352.x.1181

Jenkins, J.J., 1965. Mediation theory and grammatical behavior, in: Rosen-1182

berg, S. (Ed.), Directions in psycholinguistics. MacMillan, New York, pp.1183

66–96.1184

Jenkins, J.J., 1968. The challenge to psychological theorists, in: Dixon,1185

T.R., Horton, D.L. (Eds.), Verbal behavior and general behavior theory.1186

Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. 538–549.1187

Jenkins, J.J., 1974. Remember that old theory of memory? well, forget it.1188

American Psychologist 29, 785–795. doi:10.1037/h0037399.1189

41

http://dx.doi.org/10.1037/0033-295X.114.2.211
http://dx.doi.org/10.1037/0033-295X.114.2.211
http://dx.doi.org/10.1037/0033-295X.114.2.211
http://dx.doi.org/10.1111/cogs.12299
http://aclweb.org/anthology/N18-1108
http://dx.doi.org/10.18653/v1/N18-1108
http://dx.doi.org/10.18653/v1/N18-1108
http://dx.doi.org/10.18653/v1/N18-1108
http://dx.doi.org/10.1037/0033-295X.95.4.528
http://dx.doi.org/10.1037/0033-295X.95.4.528
http://dx.doi.org/10.1037/0033-295X.95.4.528
http://dx.doi.org/10.1080/17470218.2010.537932
http://dx.doi.org/10.1111/j.1460-2466.1964.tb02352.x
http://dx.doi.org/10.1111/j.1460-2466.1964.tb02352.x
http://dx.doi.org/10.1111/j.1460-2466.1964.tb02352.x
http://dx.doi.org/10.1037/h0037399


Jenkins, J.J., Palermo, D.S., 1964. Mediation processes and the acquisition1190

of linguistic structure. Monographs of the Society for Research in Child1191

Development 29, 141–169. doi:10.2307/1165762.1192

Johns, B.T., Jamieson, R.K., Crump, M.J.C., Jones, M.N., Mewhort, D.J.K.,1193

2016a. The combinatorial power of experience, in: Papafragou, A., Grod-1194

ner, D., Mirman, D., Trueswell, J.C. (Eds.), Proceedings of the 38th An-1195

nual Meeting of the Cognitive Science Society, Cognitive Science Society,1196

Austin, TX. pp. 1325–1330.1197

Johns, B.T., Jones, M.N., Mewhort, D.J.K., 2016b. Experience as a free pa-1198

rameter in the cognitive modeling of language, in: Papafragou, A., Grod-1199

ner, D., Mirman, D., Trueswell, J.C. (Eds.), Proceedings of the 38th An-1200

nual Meeting of the Cognitive Science Society, Cognitive Science Society,1201

Austin, TX. pp. 1325–1330.1202

Johns, B.T., Taler, V., Pisoni, D.B., Farlow, M.R., Hake, A.M., Kareken,1203

D.A., Unverzagt, F.W., Jones, M.N., 2013. Using cognitive models to1204

investigate the temporal dynamics of semantic memory impairments in1205

the development of Alzheimer’s disease, in: West, R., Stewart, T. (Eds.),1206

Proceedings of the 12th International Conference on Cognitive Modeling.1207

Carleton University, Ottawa, Canada, pp. 23–28. URL: http://iccm-1208

conference.org/2013-proceedings/papers/0004/index.html.1209

Jones, M.N., Kintsch, W., Mewhort, D.J.K., 2006. High-dimensional se-1210

mantic space accounts of priming. Journal of Memory and Language 55,1211

534–552. doi:10.1016/j.jml.2006.07.003.1212

Jones, M.N., Mewhort, D.J.K., 2007. Representing word meaning and order1213

information in a composite holographic lexicon. Psychological Review 114,1214

1–37. doi:10.1037/0033-295X.114.1.1.1215

Kelly, M.A., Blostein, D., Mewhort, D.J.K., 2013. Encoding structure in1216

holographic reduced representations. Canadian Journal of Experimental1217

Psychology 67, 79–93. doi:10.1037/a0030301.1218

Kelly, M.A., Kwok, K., West, R.L., 2015. Holographic declarative mem-1219

ory and the fan effect: A test case for a new memory model for1220

act-r, in: Taatgen, N.A., van Vugt, M.K., Borst, J.P., Mehlhorn,1221

42

http://dx.doi.org/10.2307/1165762
http://iccm-conference.org/2013-proceedings/papers/0004/index.html
http://iccm-conference.org/2013-proceedings/papers/0004/index.html
http://iccm-conference.org/2013-proceedings/papers/0004/index.html
http://dx.doi.org/10.1016/j.jml.2006.07.003
http://dx.doi.org/10.1037/0033-295X.114.1.1
http://dx.doi.org/10.1037/a0030301


K. (Eds.), Proceedings of the 13th International Conference on Cog-1222

nitive Modeling. University of Groningen, Groningen, the Netherlands,1223

pp. 148–153. URL: https://iccm-conference.neocities.org/2015/1224

proceedings/papers/0036/paper0036.pdf.1225

Kelly, M.A., Reitter, D., 2017. Holographic declarative memory: Using1226

distributional semantics within act-r, in: Laird, J., Lebiere, C., Rosen-1227

bloom, P.S. (Eds.), The 2017 AAAI Fall Symposium Series: Technical1228

Reports, The AAAI Press, Palo Alto, California. pp. 382–387. URL:1229

https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/16001.1230

Kintsch, W., Van Dijk, T.A., 1978. Toward a model of text comprehension1231

and production. Psychological Review 85, 363–394. doi:10.1037/0033-1232

295X.85.5.363.1233

Landauer, T.K., Dumais, S.T., 1997. A solution to plato’s problem: The la-1234

tent semantic analysis theory of acquisition, induction, and representation1235

of knowledge. Psychological Review 104, 211–240.1236

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky,1237

D., 2014. The Stanford CoreNLP natural language processing toolkit, in:1238

Proceedings of 52nd Annual Meeting of the Association for Computational1239

Linguistics: System Demonstrations, Association for Computational Lin-1240

guistics, Baltimore, Maryland. pp. 55–60. doi:10.3115/v1/P14-5010.1241

McNeill, D., 1963. The origin of associations within the same grammatical1242

class. Journal of Verbal Learning and Verbal Behavior 2, 250 – 262. doi:10.1243

1016/S0022-5371(63)80091-2.1244

Mewhort, D.J.K., Johns, B.T., Kelly, M., 2010. Applying the permutation1245

test to factorial designs. Behavior Research Methods 42, 366–372. doi:10.1246

3758/BRM.42.2.366.1247

Mewhort, D.J.K., Kelly, M., Johns, B.T., 2009. Randomization tests and1248

the unequal-n/unequal-variance problem. Behavior Research Methods 41,1249

664–667. doi:10.3758/BRM.41.3.664.1250

Mewhort, D.J.K., Shabahang, K.D., Franklin, D.R.J., 2018. Release from pi:1251

An analysis and a model. Psychonomic bulletin & review , 932–950doi:10.1252

3758/s13423-017-1327-3.1253

43

https://iccm-conference.neocities.org/2015/proceedings/papers/0036/paper0036.pdf
https://iccm-conference.neocities.org/2015/proceedings/papers/0036/paper0036.pdf
https://iccm-conference.neocities.org/2015/proceedings/papers/0036/paper0036.pdf
https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/16001
http://dx.doi.org/10.1037/0033-295X.85.5.363
http://dx.doi.org/10.1037/0033-295X.85.5.363
http://dx.doi.org/10.1037/0033-295X.85.5.363
http://dx.doi.org/10.3115/v1/P14-5010
http://dx.doi.org/10.1016/S0022-5371(63)80091-2
http://dx.doi.org/10.1016/S0022-5371(63)80091-2
http://dx.doi.org/10.1016/S0022-5371(63)80091-2
http://dx.doi.org/10.3758/BRM.42.2.366
http://dx.doi.org/10.3758/BRM.42.2.366
http://dx.doi.org/10.3758/BRM.42.2.366
http://dx.doi.org/10.3758/BRM.41.3.664
http://dx.doi.org/10.3758/s13423-017-1327-3
http://dx.doi.org/10.3758/s13423-017-1327-3
http://dx.doi.org/10.3758/s13423-017-1327-3


Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013.1254

Distributed representations of words and phrases and their composi-1255

tionality, in: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani,1256

Z., Weinberger, K.Q. (Eds.), Advances in Neural Information Pro-1257

cessing Systems 26. Curran Associates, Inc., pp. 3111–3119. URL:1258

http://papers.nips.cc/paper/5021-distributed-representations-1259

of-words-and-phrases-and-their-compositionality.pdf.1260

Murdock, B.B., 1982. A theory for the storage and retrieval of item and1261

associative information. Psychological Review 89, 609–626. doi:10.1037/1262

0033-295X.89.6.609.1263

Nelson, K., 1977. The syntagmatic-paradigmatic shift revisited: A review of1264

research and theory. Psychological Bulletin 84, 93–116.1265

Ororbia II, A.G., Mikolov, T., Reitter, D., 2017. Learning simpler language1266

models with the differential state framework. Neural computation 29,1267

3327–3352.1268

Pennington, J., Socher, R., Manning, C.D., 2014. GloVe: Global vec-1269

tors for word representation, in: Empirical Methods in Natural Language1270

Processing (EMNLP), pp. 1532–1543. URL: http://www.aclweb.org/1271

anthology/D14-1162.1272

Pereira, F., 2000. Formal grammar and information theory: Together1273

again? Philosophical Transactions of the Royal Society of London1274

A: Mathematical, Physical and Engineering Sciences 358, 1239–1253.1275

doi:10.1098/rsta.2000.0583.1276

Plate, T.A., 1995. Holographic reduced representations. IEEE Transactions1277

on Neural Networks 6, 623–641. doi:10.1109/72.377968.1278

Pribram, K.H., 1969. The neurophysiology of remembering. Scientific Amer-1279

ican 220, 73–86.1280

Princeton University, 2010. About wordnet. WordNet URL: http://1281

wordnet.princeton.edu.1282

Reitter, D., Hockenmaier, J., Keller, F., 2006. Priming effects in combinatory1283

categorial grammar, in: Proceedings of the 2006 Conference on Empirical1284

Methods in Natural Language Processing, Association for Computational1285

44

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://dx.doi.org/10.1037/0033-295X.89.6.609
http://dx.doi.org/10.1037/0033-295X.89.6.609
http://dx.doi.org/10.1037/0033-295X.89.6.609
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://dx.doi.org/10.1098/rsta.2000.0583
http://dx.doi.org/10.1109/72.377968
http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://wordnet.princeton.edu


Linguistics, Stroudsburg, PA, USA. pp. 308–316. URL: http://dl.acm.1286

org/citation.cfm?id=1610075.1610119.1287

Roberts, M.A., Chater, N., 2008. Using statistical smoothing to estimate the1288

psycholinguistic acceptability of novel phrases. Behavior Research Methods1289

40, 84–93.1290

Rutledge-Taylor, M.F., Kelly, M.A., West, R.L., Pyke, A.A., 2014. Dy-1291

namically structured holographic memory. Biologically Inspired Cognitive1292

Architectures 9, 9–32. doi:10.1016/j.bica.2014.06.001.1293

Saussure, F., 1916. Rapports syntagmatiques et rapports associatifs, in:1294

Bally, C., Sechehaye, A. (Eds.), Cours de linguistique générale. Payot,1295

Paris, France, pp. 170–175.1296

Shannon, C.E., 1951. Prediction and entropy of printed english. Bell System1297

Technical Journal 30, 50–64. doi:10.1002/j.1538-7305.1951.tb01366.1298

x.1299

Sidman, M., 2009. Equivalence relations and behavior: An introductory tuto-1300

rial. The Analysis of Verbal Behavior 25, 5–17. doi:10.1007/bf03393066.1301

Sloutsky, V.M., Yim, H., Yao, X., Dennis, S., 2017. An associative account1302

of the development of word learning. Cognitive Psychology 97, 1 – 30.1303

doi:10.1016/j.cogpsych.2017.06.001.1304

Steedman, M., Baldridge, J., 2011. Combinatory categorial grammar, in:1305

Borsley, R., Borjars, K. (Eds.), Non-Transformational Syntax: Formal and1306

Explicit Models of Grammar. Wiley-Blackwell, pp. 181–224.1307

Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-1308

of-speech tagging with a cyclic dependency network, in: Proceedings of1309

the 2003 Conference of the North American Chapter of the Association for1310

Computational Linguistics on Human Language Technology, Association1311

for Computational Linguistics, Edmonton, Canada. pp. 173–180. doi:10.1312

3115/1073445.1073478.1313

Ward, G., 1996. Moby Part-of-Speech. University of Sheffield. URL: http:1314

//icon.shef.ac.uk/Moby/mpos.html.1315

45

http://dl.acm.org/citation.cfm?id=1610075.1610119
http://dl.acm.org/citation.cfm?id=1610075.1610119
http://dl.acm.org/citation.cfm?id=1610075.1610119
http://dx.doi.org/10.1016/j.bica.2014.06.001
http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x
http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x
http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x
http://dx.doi.org/10.1007/bf03393066
http://dx.doi.org/10.1016/j.cogpsych.2017.06.001
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/1073445.1073478
http://icon.shef.ac.uk/Moby/mpos.html
http://icon.shef.ac.uk/Moby/mpos.html
http://icon.shef.ac.uk/Moby/mpos.html


Appendix: Encoding order with one versus two permutations1316

Our approach to encoding the sequential order of words differs from Jones1317

and Mewhort (2007). Convolution is commutative, that is, invariant to the1318

sequential order of the operands, i.e., v1 ∗ v2 = v2 ∗ v1. However, the se-1319

quence of the words can be preserved by permuting each operand. Jones and1320

Mewhort, p.35, using a method proposed by Plate (1995, p.12), apply two1321

different permutations to the left and right operands of convolution, such1322

that (Pleftv1) ∗ (Prightv2) 6= (Pleftv2) ∗ (Prightv1).1323

We apply a permutation only to the left operand as it is simpler and1324

sufficient for preserving sequence: (Pbeforev1) ∗ v2 6= (Pbeforev2) ∗ v1. Our1325

one-permutation method is isomorphic to using two permutations. Vectors1326

constructed using one permutation will have, in expectation, the same spatial1327

relationships to each other as vectors constructed using two permutations,1328

cosine ((Pbeforev1) ∗ v2, (Pbeforev3) ∗ v4) ≈
cosine((Prightv1) ∗ (Pleftv2), (Prightv3) ∗ (Pleftv4))

where spatial relationships are measured by the cosine similarity. Differences1329

in the cosine similarity between the two methods will be due to small, zero1330

mean variations introduced by using the Pright permutation. The isomor-1331

phism arises because convolution and permutation preserve cosine similarity1332

relationships, such that cosine(v1,v2) = cosine(Pv1,Pv2) and,1333

cosine((Pv1) ∗ v2, (Pv3) ∗ v4) ≈ cosine(Pv1,Pv3)× cosine(v2,v4) (3)

for any vectors v1,v2,v3,v4 and permutation P.1334
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